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ABSTRACT

We consider a distributed optimization problem where n nodes, Sl,
l ∈ {1, . . . , n}, wish to minimize a common strongly convex func-
tion f(x), x = [x1, . . . , xn]T , and suppose that node Sl only has
control of variable xl. The nodes locally update their respective vari-
ables and periodically exchange their values over noisy channels.
Previous studies of this problem have mainly focused on the conver-
gence issue and the analysis of convergence rate. In this work, we
focus on the communication energy and study its impact on con-
vergence. In particular, we study the minimum amount of com-
munication energy required for nodes to obtain an ε-minimizer of
f(x) in the mean square sense. In an earlier work, we considered
analog communication schemes and proved that the communication
energy must grow at the rate of Ω(ε−1) to obtain an ε-minimizer
of a convex quadratic function. In this paper, we consider digital
communication schemes and propose a distributed algorithm which
only requires communication energy of O

((
log ε−1

)3
)

to obtain

an ε-minimizer of f(x). Furthermore, the algorithm provided herein
converges linearly. Thus, distributed optimization with digital com-
munication schemes is significantly more energy efficient than with
analog communication schemes.

Index Terms— Distributed optimization, Sensor networks, En-
ergy constraint, Convergence

1. INTRODUCTION

Consider a network of n nodes which collaborate to minimize a cost
f(x), x = [x1, . . . , xn]T , where xl is a local (vector) variable con-
trolled by node Sl. Each node can perform local computation and
exchange messages with a set of predefined neighbors through or-
thogonal noisy channels. Moreover, we assume f(x) has a certain
“local structure” in the sense that its partial derivative with respect
to xl only depends on the local variables at node Sl and its neigh-
bors. A distributed optimization problem of this kind arises naturally
in sensor network applications. For example, in the sensor localiza-
tion problem, we are given the locations of anchor nodes and dis-
tance measurements between certain neighbor nodes in the network.
The goal is to estimate the locations of all sensors in the network
by distributed minimization of a cost function f(x) defined by the
Lp norm of distance errors [2]. In this context, xl is the location of
sensor Sl and is to be estimated by Sl. To minimize f(x), sensor Sl

periodically updates its local variable, xl, and exchanges information
with neighbor nodes through orthogonal noisy channels. A special

This work is supported by the USDOD Army, grant number W911NF-
05-1-0567 and by Digital Technology Center, University of Minnesota.

feature of this problem is the fact that nodes are usually battery op-
erated and hence energy-constrained. Note that energy of each node
is consumed for various operations including local computation and
inter-sensor communication, with the latter being the dominant part.
This motivates us to study the minimum amount of communication
energy required for distributed optimization.

Energy consumption has not been a consideration of algorithm
design in classical distributed optimization [1]. Even recent studies
of distributed optimization in the context of sensor networks [7, 4]
have mainly focused on convergence issues such as convergence cri-
teria and convergence rate. To the best of our knowledge, the most
relevant work to this paper is [6] which studied the minimum number
of bits that must be exchanged between two nodes in order to find
an ε-minimizer of f . However, unlike our current work, the commu-
nication channel is assumed distortion-less in [6], and there was no
effort to characterize minimum energy consumption.

Recently, we considered an analog communication scheme for
this distributed optimization problem and proved that the communi-
cation energy must grow at the rate of Ω(ε−1) in order to obtain an
ε-minimizer of convex quadratic f(x) [5]. In this paper, instead, we
consider digital communication schemes for a wider class of cost
functions, strongly convex function, and propose a distributed al-
gorithm which requires O

((
log ε−1

)3
)

communication energy to

obtain an ε-minimizer of f(x). Furthermore, the algorithm provided
herein converges linearly to the optimal solution as compared to our
previous algorithm which has a sub-linear convergence rate. Thus,
digital communication schemes are far more energy efficient than
analog communication schemes for distributed optimization.

2. ALGORITHM FRAMEWORK
Let FSC,M,L (‘strongly convex functions’) be a set of continuously
differentiable function f(x) with the properties

L ‖x− y‖2 ≤ 〈∇f(x)−∇f(y),x− y〉 ≤ M L ‖x− y‖2 , (1)

where ∇f(x) is gradient vector of function f(x) at point x, and M
and L are positive numbers.

Consider a distributed optimization problem where n nodes, Sl,
l ∈ {1, . . . , n}, jointly minimize a common cost function f(x) ∈
FSC,M,L,x = [x1, . . . , xn]T . Node Sl only has control of vari-
able xl and has ability to compute the partial derivative of the cost
function with respect to its local variable. Furthermore, we assume
that the local variable xl, l ∈ {1, . . . , n} has a finite range and is
bounded to [0, 1].

We assume that nodes communicate through orthogonal time-
invariant noisy channels. The communication channel between nodes



Sl and Sj is corrupted by Additive White Gaussian Noise (AWGN)
with power spectral density N0/2:

m̂l,j = d
κ/2
l,j ml + vl,j ,

where m̂l,j is the received message at node Sj from node Sl, and vl,j

is the AWGN. The signal power received at node Sj is assumed to
be inversely proportional to dκ

l,j , where dl,j is the distance between
nodes Sj and Sl, and κ is the path loss exponent. We assume that
energy required for transmission of ml is proportional to the number
of bits in the message (bl). This is the case e.g., if nodes use M-
QAM or M-PSK modulation to transmit messages. For example, if
M-QAM is used, the energy per bit Wl(Pb) is [3]:

Wl(Pb) =
4Nf max

j
Nl,jd

κ
l,jG0(2

s − 1)

3s
log

(
4(1− 2−

s
2 )

sPb

)

= wl log

(
4(1− 2−

s
2 )

sPb

)
,

where s is the number of bits per M-QAM symbol, Nf is the receiver
noise figure, Nl,j is the power spectrum density of channel noise
between nodes Sl and Sj , G0 is the system constant defined as in
[3], and Pb is the required bit error probability. Therefore, the total
communication energy is

Ecom(t) =

t∑
i=1

n∑

l=1

Wl(Pb(i))bl(i).

This paper aims to study the minimum communication energy
required to obtain an ε-minimizer of f(x) in the mean square sense.
A point x is an ε-minimizer of f(x) in the mean square sense if

E[‖x− x∗‖2] ≤ ε, x∗ = arg min
x

f(x).

Here, we introduce a distributed algorithm in which node Sl iter-
atively updates its local variable xl and tracks the variables of its
neighbors. The algorithm consists of two parts: A digital communi-
cation scheme and a local computation scheme at each node.
A. Communication scheme: After each local update, node Sl should
relay its information to the other nodes. One way is to directly
send the quantized version of the updated value of its local variable,
xi

i(t + 1), which requires transmitting more bits, and thus consum-
ing more energy, as algorithm proceeds. An alternative way is to
send the quantized version the incremental value, xi

i(t + 1)− xi
i(t),

in which case requires transmitting a constant number of bits at each
iteration but may not guarantee the convergence of the algorithm due
to communication error. In general, we can consider a linear mes-
saging scheme where the transmitted signal, ml(t), is given as

ml(t) = Q(xl
l(t)− γ(t)xl

l(t− 1)) = [sgnl(t), ampl(t)] (2)

where sgnl(t) represents the sign of xl
l(t) − γ(t)xl

l(t − 1), and
ampl(t) is the binary representation of integer part of 2R(t)|xl

l(t)−
γ(t)xl

l(t − 1)|. The resolution of quantizer, R(t), is a design pa-
rameter and will be determined later. Receiver node Sj first detects
m̂l(t) = [ŝgnl(t), âmpl(t)] and then reconstructs xj

l as following
(xj

l (0) = 0)

xj
l (t) = γ(t)xj

l (t− 1) + ŝgnl(t)2
−R(t)âmpl(t). (3)

Notice that variable xj
l (t) is a noisy copy of node Sl’s variable xl

l(t)
at node Sj . Define nQ,l(t), and el,j(t) as quantization noise at node

Sl at iteration t, and communication error due to channel noise be-
tween node Sl and Sj at iteration t, respectively.

nQ,l(t) = sgnl(t)2
−R(t)ampl(t)−

(
xl

l(t)− γ(t)xl
l(t−)

)

el,j(t) = ŝgnl(t)2
−R(t)âmpl(t)− sgnl(t)2

−R(t)ampl(t)

Then the variable xj
l (t) is given as

xj
l (t) = γ(t)xj

l (t−1)+xl
l(t)−γ(t)xl

l(t−1) + nQ,l(t)+el,j(t)

= xl
l(t) +γ(t)

(
xj

l (t−1)− xl
l(t−1)

)
+nQ,l(t)+el,j(t)

= xl
l(t)+

t∑
i=1

t∏

k=i+1

γ(k) (nQ,l(i) + el,j(i)) . (4)

B. Local computation scheme: Optimization algorithms in the pres-
ence of noise can be performed based on the gradient projection al-
gorithm proposed in [6]. One iteration of this algorithm is given as

x(t) = [x(t− 1)− ag(x(t− 1))]+ ,x(0) = 0. (5)

where [x]+ is the projection of x on [0, 1], a is a constant posi-
tive step size, and g(x(t)) is a noisy version of the gradient vector
∇f(x(t)). For f(x) ∈ FSC,M,L, it has been proven in [6] that if
g(x(t)) satisfies

‖g(x(t))−∇f(x(t))‖ ≤ n1/2αt, t = 1, . . . , (6)

for α < 1 sufficiently close to 1, then the sequence {x(t)} generated
by the gradient projection algorithm (5) converges linearly to the
optimal point.

We consider a distributed implementation of the gradient projec-
tion algorithm whereby Sj , j ∈ {1, . . . , n} uses the noisy copy of its
neighbors variables to estimate gj(x), the partial derivative of f(x)

with respect to its local variable xj , and to update xj
j as (xj

j(0) = 0)

xj
j(t) =

[
xj

j(t− 1)− 1

LM
gj

(
xj

1(t), . . . , x
j
n(t)

)]

+

. (7)

Here, we have chosen a = 1
ML

. In the next section, we first derive a
sufficient condition on the coefficient γ(t), the resolution R(t), and
probability of bit error Pb(t) to obtain an ε-minimizer of f(x). We
then bound the total communication energy.

3. CONVERGENCE CONDITION AND COMMUNICATION
ENERGY

Let x(t) = [x1
1(t), . . . , x

n
n(t)]T and define g(x(t)) as a vector of the

partial derivatives of f(x) with respect to the local variables which
are computed locally at each node using the noisy replicas of neigh-
bors variables:

g(x(t)) = [g1

(
x1

1(t), . . . , x
1
n(t)

)
, . . . , gn (xn

1 (t), . . . , xn
n(t))]T .

Then, the distributed computation (7) can be expressed as the gradi-
ent projection algorithm

x(t) =

[
x(t− 1)− 1

LM
g(x(t− 1))

]

+

. (8)

Notice that the convergence condition (6) does not satisfy for every
realization of channel noise. Therefore, the sequence {x(t)} gener-
ated by (8) might not converge to the optimal point. However, under
a modified assumption, the sequence {x(t)} converges to the opti-
mal point x∗ in the mean squared sense using the following lemma:



Lemma 1 For f(x) ∈ FSC,M,L, if g(x(t)) satisfies

E
[‖g(x(t))−∇f(x(t))‖2] ≤ nα2t, t = 1, . . . , (9)

where
(1− 1

M
) + 3

√
(

2

LA
) ≤ α2 < 1, (10)

then the sequence {x(t)} generated by the gradient projection al-
gorithm (8) converges linearly to the optimal point x∗ in the mean
squared sense such that

E
[
‖x(t)− x∗‖2

]
≤ 2A

L
nα2t.

where

The proof of Lemma 1 is similar to the proof of proposition 5.1 in
[6] and omitted here for lack of space. We use Lemma 1 to show
that the proposed algorithm generates an ε-minimizer of f(x) if the
design parameters are chosen as

γ(t) = α, (11)

R(t) =

⌈
log2

(√
2ML

1− α2
α−2t

)⌉
, (12)

Pb(t) =
3

(
1− α2

)

8LM
α4t, (13)

where dxe is the smallest integer number greater than x, α is a pos-
itive constant less than 1, and logy(x) is the logarithm base y of
x.

Theorem 1 If the design parameters, γ(t), R(t), and Pb(t) sat-
isfy (11)-(13), then the distributed algorithm described by (2), (3),
and (7) obtains an ε-minimizer of f(x) ∈ FSC,M,L in the mean
square sense. Moreover, the communication energy to obtain an ε-
minimizer of f(x), x(tε), is

Ecom(tε) = O
((

log ε−1)3
)

.

Proof: We first show that the convergence condition (9) of Lemma 1
holds. Therefore, the proposed algorithm obtains an ε-minimizer of
f(x).

For f(x) ∈ FSC,M,L, It follows form (1) that

‖∇f(x)−∇f(x̂)‖ ≤ M L ‖x− x̂‖ .

Therefore,

E
[‖g(x(t))−∇f(x(t))‖2]≤MLE

[
n∑

l=1

(
xJ

l (t)−xl
l(t)

)2
]

=ML

n∑

l=1

E
[(

xJ
l (t)−xl

l(t)
)2

]
, (14)

where J is given as

J = arg max
j

∥∥∥∥
[
xj

1(t)− x1
1(t), . . . , x

j
n(t)− xn

n(t)
]T

∥∥∥∥
2

.

Substitute the difference between variable xl
l and its noisy copy at

node SJ , xJ
l , from equation (4), and use the fact that the quantization

noise and communication error are uncorrelated to obtain

E
[(

xJ
l (t)−xl

l(t)
)2

]
=E




(
t∑

i=1

t∏

k=i+1

γ(k)(nQ,l(i)+el,J(i))

)2



=

t∑
i=1

t∏

k=i+1

γ2(k)
(
E

[
n2

Q,l(i)
]
+E

[
e2

l,J(i)
])

.(15)

The power of quantization noise E
[
n2

Q,l(i)
]

is upper-bounded by

E
[
n2

Q,l(i)
] ≤ 2−2R(i), (16)

where R(i) is resolution of quantizer. Notice that the number of
transmitted bits at iteration i is bounded by R(i). Therefore, the
power of communication error E

[
e2

l,J(i)
]

is bounded by

E
[
e2

l,J(i)
] ≤

R(i)∑
q=0

Pb(i)2
−2q ≤ 4Pb(i)

3
. (17)

Substitute (15)-(17) into (14) to derive

E‖g(x(t))−∇f(x(t))‖2

≤ nML

t∑
i=1

t∏

k=i+1

γ2(k)

(
2−2R(i) +

4Pb(i)

3

)
.

It follows from Lemma 1 that the proposed algorithm obtains an ε-
minimizer of f(x) if

t∑
i=1

(
2−2R(i) +

4Pb(i)

3

)

i∏

k=1

γ2(k)

≤ α2t

ML

t∏

k=1

γ2(k)

, t = 1, . . . . (18)

Notice the left-hand side of the inequality (18) is a non-decreasing
function of iteration number t. Hence, the right-hand of the inequal-
ity (18) should also be a non-decreasing function of iteration num-
ber. Therefore, we have α2/γ2(t) ≥ 1, and thus γ(t) ≤ α. Let
γ(t)α. Then, to prove the convergence of the proposed algorithm, it
is enough to show that

t∑
i=1

α−2i2−2R(i) ≤ 1

2ML
, (19)

t∑
i=1

α−2iPb(i) ≤ 3

8ML
. (20)

Recall the resolution R(i) from (12) and notice that α < 1.
Therefore, the inequality (19) holds as

t∑
i=1

α−2i2−2R(i) ≤ 1− α2

2LM

t∑
i=1

α2i ≤ 1

2LM
.

Similarly, the inequality (20) holds for the choice of the bit error
probability Pb(i) at (13). Therefore, the convergence condition (9)
is satisfied and the algorithm converges linearly to the optimal point
in the mean squared sense (Lemma 1). In particular, the algorithm
obtains an ε-minimizer of f(x) at iteration tε, if

tε ≥
⌈

1

2
logα

(
Lε

2An

)⌉
. (21)

So far, we have shown that the proposed algorithm obtains an
ε-minimizer of f(x). Next, we derive the communication energy in
terms of ε. Recall that the total communication energy is

Ecom(tε) =

tε∑
i=1

n∑

l=1

Wl(Pb(i))bl(i).
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Notice that the communication energy per bit is

Wl(Pb(i))=wl log

(
4(1− 2−

s
2 )

sPb(i)

)
=4wl log α−1i+O (1) , (22)

and the number of transmitted bits at iteration i bl(i) is bounded by
R(i) + 1. Substitute the resolution R(i) from (12), the communica-
tion energy per bit Wl(Pb(i)) from (22) to obtain

Ecom(tε) ≤
tε∑

i=1

(
c1i

2 +O(i)
)

=
c1

3
t3ε +O(t2ε), (23)

where constant c1 is equal to 8n max
l

wl log α−1 log2 α−1. Replace

the iteration number from (21) into (23) to derive

Ecom(tε) = c2

(
log ε−1)3

+O (
log ε−1)2

,

where constant constant c2 is equal to
c1

24 (log α−1)3
. The theorem

has been proven. ¥

4. SIMULATION RESULTS
To illustrate the concept, we consider a simple example where 10
nodes minimize a quadratic convex function f(x) = 1

2
xT Qx +

bT x+c, where Q ∈ R10×10,Q Â 0. Notice that f(x) ∈ FSC,M,L

where M and L are the condition number and minimum eigenvalue
of matrix A, respectively. We generate a random matrix A such that
f(x) ∈ FSC,2,1, and select vector b such that f(x) has a minimum
point at x = [0.5, . . . , 0.5]T . Since all coefficients wl are scaled
by a common factor. In simulation, wl are taken to be maximum of
channel path loss wl = maxj dκ

l,j , κ = 2. The mean square error for
different value of α averaged over 10 runs is shown in Figure 1. This
figure confirms that the algorithm converges linearly to the optimal
point. Notice that the choice of α should satisfy (10). In particular,
α ≥

√
1− 1/M =

√
2/2. Figure 2 shows that the communication

energy required to obtain ε-minimizer, normalized by c2

(
log ε−1

)3,
is bounded. This figure also shows the normalized communication
energy for the worst case scenario where R(i) + 1 number of bits is
transmitted by each node at ith iteration. These results agree with
our theoretical analysis.
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5. CONCLUSIONS AND FUTURE WORK
We studied the problem of distributed optimization of a strongly con-
vex function in an energy-constrained network. We considered a
class of distributed gradient projection algorithm implemented us-
ing certain digital messaging schemes. We proposed an algorithm
which requires communication energy of order O

((
log ε−1

)3
)

to
obtain an ε-minimizer. Furthermore, this algorithm converges lin-
early to the optimal solution. Our numerical simulations confirmed
our theoretical analysis.
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